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ON CORRECTNESS 

OF 

A one-dimensional, nonstationary flow of a mixture of gas containing a dispersionof 

solid particles is used to investigate the correctness of the Cauchy problem within 

the framework of a two-fluid model /l/. The analysis is carried out with and with- 

out the volume occupied by the particles, taken into account. In both cases the 

norms are defined within which the problem is correct, even when the "fine ripples" 

appearing on the initial data cause the intersection of the particle trajectories 

upon which their volume density becomes infinite. The possibility of introducing 

the norms within which a problem, incorrect in some norm /2/, becomes correct with- 

out changing the model, is of major importance, since the correctness of the Cauchy 

problem, which does not represent another (straight) problem posed in different 

formulation, is considered as a natural requirement for the mathematical models of 

real processes /3,4/. 
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OF THE CAUCHY PROBLEM FOR A TWO-FLUID MODEL 

A GAS FLOW CONTAINING PARTICLES* 

A.N. KRAIKO 

1. Using the two-fluid model approximation /l/ we describe the one-dimensional nonstat- 

ionary flow of a mixture of gas and solid particles in the domains of continuity of the 

parameters, by the equations 

2jl+EgLo, g + +g+ +o (1.1) 

_!$+a*=o, ++p$+, D%+!po 

p = p” -VP_ ‘p” = p” (p, T), i = i (p, T), s = s (P, 0 
e, = e, (T,), f = qf . (V - v#), q = Q*(T - TJ 
cr = q - (v - v,) f, p = 1 / pso, v = P0 1 PP 
(D I Dt = a I at + Ua I ax, D" / Dt = a / at + Usa / ax) 

Here t is time, X is the space variable p is pressure, p0 and p are the real and "blurred" 
densities, i and s are the specific enthalpy and entropy, Tis absolute temperature, and v 

is the velocity of gas with the components u and v,where u is the projection on the x-axis 
and vy on the plane normal to the s-axis, the subscript s denotes the analogous parameters 
of the second phase (e,is the specific internal energy), D /Dt and D"lDt are the total 

differentiation operators along the gas and the particles trajectories, f is the partofthe 

force acting on the particles from the direction of the gas and g.overned by the difference in 
their velocities, f and f, are the projections of f analogous to u and vrr q is the thermal 

flux from the gas towards the particles (fand q are referred to unit mass of the particles), 
qr and 'pp are known nonnegative functions of themlodynamic variablesand 1 v -v, I,p”(p, T), . . . 
are known functions of their arguments. All parameters are assumed dimensionless and made so 
by means of the constants t,, V,, pc and Cc which have dimensions of time, velocity, density and 

specific heat capacity. In addition tf = 'pi-' and t, =cps-l(ae, iaT,) assumes the sense of the 
dynamic and thermal relaxation times referred to t,. 

We formulate the Cauchy problem in question as follows. We define at t = 0 the constant 
distributions of all parameters 

v (0, z) = v,,, T (0, x) = To, v, (0, z) = v,o, . . . (--00 < x < 00) (1.2) 

with constants v0 # v,,, and T0 # T,,. Then for t>O the parameters will, by virtueof (1.1) 
and (1.2), be independent of 5, and p,p" and ps also independent of t. Taking this into 
account, we can describe the flow using ordinary differential equations which can be obtained 
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by taking (1.1) without the first 

and replacing alat by dl dt. The 
ions of the impulse and energy of 
particular, to obtain at once the 

ature (T,) of the mixture 

and third equation, deleting from it the derivatives in J, 

four combinations of these equations defining the project- 

the mixture can be integrated, thus making it possible, in 

asymptotic (equilibrium) values of velocity (v,) and temper- 

v, = v = v,, T, = T = T, (1.3) 

When v,o#vo and T,of T,, the relations (1.3) are strictly fulfilled only as t-+ co. However, 

if 1 fjv 1 E IV, - V I< 1 V 1 and i6T 1 G I T, - T 1 (<T, then further approach to the equilibrium 
is exponential 6v = (bv)&xP (-t ltfe) and 6T = (6T), exp (-t/t,,) , and the equilibrium is estab- 
lished at t > t, where t, = max (tf, t4). 

The problem with initial conditions for a system of ordinary differential equations has, 

in the present case, a unique solution. For this reason the analysis of the correctness of 

the Cauchy problem (1.1) and (1.2) reduces to investigating, how the perturbation in the in- 
itial conditions (1.2) as dependent of mis reflected in the solution after any finite length 

of time. Taking this time as t,, we consider the behavior of the perturbed solution at O( 

t < 1. The initial perturbation of any parameter miis specified in the form of "fine ripples", 

setting 

rp (0, 5) = ‘p. + ‘po’ E ‘p. + EP sin kx (-co < x < 00) (1.4) 

Here Cpo denotes the unperturbed value of (1.2), em is the perturbation amplitude, k'and I= 

2nl k are the wave number and wave length. Since the quantities in (1.4) are dimensionless, 

it follows that 'p. = O(1) and @<I. The wave length is referred to v,t, and k to the in- 

verse quantity. 

Depending on the initial differences in the phase velocities and temperatures, the per- 

turbations in the values of the parameters uo', usO', . . . and the quantity t,, the whole in- 

terval 0< t< 1 or its subintervals, are of the equilibrium (E) or nonequilibrium (N) type. 

We shall assign to the equilibrium (nonequilibrium) type the time intervals on which the 

deviations of the unperturbed flow parameters from their equilibrium values (1.3) are small 

(large). In turn, the intervals of the type Ncan be subdivided into the subsonic (SB) and 

supersonic (SP) subintervals in accordance with the characteristic properties of the system 

(1.1). The characteristic form in this system is assumed, before everything else, by two 

vector equations (each with two projections for V~ and v,,) and two scalar equations, i.e. six 

of the ten partial differential scalar equations, irrespective of the values of the parameters 

of the mixture. Three of these equations, namely the fifth (vector) and the sixth, are writ- 

ten along the gas trajectories, and the remaining three, i.e. the seventh (vector) and the 

eighth along the particle trajectories. The type of the subsystem of the first four equations 

of (l.l), connected with those listed above only by the coefficients and free terms, is deter- 

mined by the number of real roots of the characteristic equation /5/ 

f (X, A, x) 5 (z - A)2(xz - 1) - xx2 = 0 (1.5) 
X = (u - x’) /a, A = (u - u,) / a, x = p8pvpo / p 
CT2 = PpO + pro (1 - pOi,)/ (PIT) 

in which x'=dxldt gives the slope of the characteristic in the xt-plane, a is the speed of 

sound in the gas and the subscripts p and T are assigned to the corresponding partial derivat- 

ives. 
The compatibility conditions which holdon the characteristics of this subsystem, have 

the form /5/ 

P,PT"a 
u’ - & P’ + x pp”’ F(JS +f + &{_z_(us~-f) +(Us-U)$]=O (1.6) 

where, as in (1.5), a dot denotes the total derivative in t along the characteristic. If 

x>Oand 

I A 1 > A* s (1 + x”~)*‘~ (1.7) 

then, according to /l/, (1.5) has four different real roots X,,...,X,, and the first four 
equations of (1.1) can therefore be replaced by the equivalent characteristic systemobtained 

by making the substitution X = Xjcj = I,...,'4 in (1.6). When / AI.<,4*, such a substitu- 
tion becomes impossible (if x+0 and 1 A 1 (a,, then only two equations can be replaced by 

the characteristic equations). Therefore, when x#O, the time intervals on which the in- 

equality (1.7) does (does not) hold, i.e. on which the difference between the m-components 

of the gas and particle velocities is supersonic (subsonic) with the accuracy of uptoasmall 

(in real situations) deviation of A, from unity, shall be referred to the supersonic (sub- 
sonic) type. In the simplified model which neglects the volume of the particles, for which 
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p,v and x are all equal to zero, the equation of continuity of the particles cannot be re- 
placed by the equation of the characteristic type no matter when A are, although, when x = 0, 
(1.5) has four real roots (X1,, = 71 or xi,2 = u&a correspond to the c* characteristics and 
X 3,4 = A or xi, ., = us to the particle trajectories). For this reason, the subdivision into 
the SB- and SP-intervals is not carried out in such model. 

If the total time interval consists of various type intervals (e.g. Sp, SB and _!?), then 
the analysis of the correctness of the whole problem reduces to consecutive investigationsof 
several Cauchy problems, the first problem with the initial data (1.4) and the subsequent 
problems with initial data obtained from the solutions of the preceding problems (assuming 
that they are correct). In the course of considering each problem, its initialandfinaltime 
is calculated conveniently by relating them to t=O and t= 1. Clearly, the correctness 
of the Cauchy problem for the total interval presupposesnotonly its correctness on its sub- 
intervals, but also the matching of the "initial" and "final" norms. The latter means that 
each preceding problem must be correct in that norm of the final results, which ensures the 
correctness of the following problems in which those results are used as the initial data. 

The first stage of investigating the correctness is based on the linearization of (1.1) 
and the assumption that perturbations of all parameters are small. The solution obtained as 
a result of the linearization is sought in the form 

Cj’(t,.T)= Imx Rj'(k, t) enp ik(Z - 6j(k,t)} 

j 

(1.8) 

where m'(t, x) denotes a perturbation of any parameter which can be represented in the form of 
a sum of 'p' and the unperturbed solution v(t), i is the number of linearly independent solu- 
tions of the system, Aj0 and 6j are the corresponding complex amplitudes and phases. From 
(1.8) and (1.4) it follows that for all m and j 

6j (k, 0) = 0, Irnx A,q (k, 0) = EV, Re z Aj’(k, 0) = 0 
j j 

(1.9) 

The right-hand sides of (1.8) are particularly simple for the E intervals on which the 
unperturbed parameters are constant, since in this case hi z 86j/at are constants and Aj’ 

are either constants, or polynomials (for the multiple hi). We find however that for the N- 
intervals the variability of Cp and hence of the coefficients of linear system does not cause 
any serious difficulties, since in this case only k-too are important. The latter is due 
to the boundedness of Aj' and 6, at finiteek and 0< t< 1 which occur, as a rule, in such 
problems. For this reason the incorrectness is usually not connected with the finite k, 
since in this case the smallness of (p'(1,x) can always be secured by reducing the required 
number of timestheamplitudes 6'~ of the initial perturbations which determine, according to 
(l-9), Aj’ (k, 0). 

Limiting ourselves,by virtue of the above arguments, to large k, we shall continue, as 
in /3/, using when required the method of many scales /6/. Using this approach we establish, 
before anything else, that in the principal orders in Ilk the right-hand sides of (1.8) for 

", t ’ “ST’, s’ and e,' each contain a single term with amplitudes assuming finite values as k+ 00, 
with h= U (t) for VT’ and s' and k = U, (t) for-v,,' and e,'. According to (1.9) and the defini- 
tion of h,, we have 

6j(k, t)=ikj (k, T)~T (1.10) 
0 

and this implies that the terms of (1.8) with the amplitudes bounded as k-t 00 and the real 

a, 1 and hence v~', v,~', s' and e,', are all bounded. In contrast with this, the expressions 
(1.8) for u', p', u,' and p.' can contain up to four terms, and h,, which define according to 
(1.10) the corresponding phases, are roots of the "dispersion" 
h) la. 

equation (1.5) with X = (a _ 
when x+=0, the equation has on the SB-intervals, in addition to two real roots 

Xl,% = Tl + 0 (x) I two complex conjugate roots, which implies at the first glance the incor- 
rectness of the Cauchy problem.- In fact however the argument given here which holds for a 
specified norm, by no means excludes the possibility of introducing such norms in which the 
correctness is apparent on the intervals of all types. Before demonstrating such a possibil- 
ity for (l.l), we turn our attention to the simplified model which disregards the volume 
(v = p = x = 0) of the particles. This enables us to clarify a number of fundamentalaspects 

and to simplify the analysis of the case x#O. Moreover, comparing the laws applicable to 
the models x = 0 and x#O we can explain the reasons behind the appearance of numericalin- 
stabilities which, although apparent in the computations with X#O, do not materialize 
when a simplified model is used. 
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2. Let us consider the model X = 0. Remembering that its only interesting aspect is 
that of k+ co we turn, before anything else, to the dispersion equation (1.5). As we have 
already said, at x = 0 all its roots are real (Xl,z = ill, X3,& = A) and one of the first four 

equations of (1.1) with p =v = 0, i.e. the equation of continuity of the particles, cannot 
be reduced to the characteristic form. Therefore, taking into account (1.9) and (1.10) we 
find, that all 6, are real, u', p’ and u,' are bounded, and 

pa' = eps sin ki - pS kt+ cos kc, j=s-~Su,(7)dT~z-uu,ot (2.1) 
” 

The appearance in the solution of the terms proportional to kt may imply the incorrectness of 

neglecting the free terms in the linearized equation in the course of deriving the dispersion 

equation for k-+ 00. However, the analysis carried out for q, independent of p,,withthose 

terms taken into account, results only in a minor modification in the expressions for u',p' 

and u,'which remained bounded as before, and in the appearance in (2.1) of additional (also 
bounded) terms, as well as change of the coefficients accompanying cl's and Eva. In part- 

icular, the term proportional to kt is replaced by a sum of terms ofthe form lie"f (kc) a-'erpat 

where f (h-5) = sin kc or cm kc, and a are constants independent of J; and connected with the 

coefficients of the linearized equations. It is for the latter reason that taking into ac- 
count the free terms is not, in this case, of principal importance, since it does not affect 

the rate of growth of the perturbations in k as k-+ CO. 

According to (2.1) and results of a more exhausting analysis taking into account the 

free terms of the equations, the smallness of &Q does not guarantee the smallness of ps' when 

t = 1, since k can be arbitrarily large. Although this demonstrates the incorrectness of the 

Cauchy problem under the same perturbations norms for t -: 0 and t z 1, the situation changes 

if we include in the set of initial perturbations not only the perturbationsoftheparameters 

themselves, but also of their first derivatives in z, ’ &X0 - kE”S before anything else. 

The possibility indicated here is not however unique. Indeed, the problem in question 

specifies unbounded (for fixed E"' and k+ m) the growth of ps', with the perturbations of 

the other parameters remainingwithinthe order of their initial values. Keeping thisinmind, 

we turn our attention to the integral law of conservation of particle mass which for an 

arbitrary closed contour r in the &-plane, has the form 

’ ) (pb dx - paus dt) = 0 ;r (2.2) 
r 

where ps and u, are understood to represent the complete (initial + perturbations) parameters. 

Applying (2.2) to the contour composed of the straight line segments t = 0 and t = const< 1 

with their ends connected by the perturbed particle trajectories, and taking into accountthe 

smallness of ug‘, we find that 

(2.3) 

for any segment ab of the straight line t = const < 1. 

It is important that the estimate (2.3) was obtained without making use of the period- 

icity of the solution in 5, the latter causing for such segments m'= O(ePsk-‘) for any IL*'. It 

is for this reason only that the estimate in question which hoidsat small uh) for any segments 

different from the particle trajectories, and for the nonperiodic solutions, is of a certain 

interest. 
By virtue of (2.3) the Cauchy problem is correct if we replace in the set of the results 

Ps' by m‘ , without including the derivatives in x in the set of initial data. Since a small 

change in mensures a small change in the mean particles density m / (z~ - xc,), it follows that 

such a replacement is natural and justified. Using as ab the segments of length small com- 

pared with the characteristic dimension (unity in this case), but finite, enables us to ob- 

tain, over m, the smoothed distributions ps which are, in fact, necessary. This possibility 

is particularly interesting for a model with x+=0 where the incorporation of the derivatives 

into the set of initial data does not always make the incorrect problem correct. Keeping 

this in mind, we shall show that in the case of initial perturbations with unbounded derivat- 

ives (k+ co at fixed eQ< 1) the nonlinear effect result in the intersection of the part- 

icle trajectories and, in contrast to (2.1), ps becomes infinite at finite t<l. We note 

that in /2/ such intersections are regarded as the cause of the incorrectness of the Cauchy 

problem. 
At the points of intersection ps' + 00 , with u', p', of the order of UO’. PO’, . . . 

Although the results of the linear analysis of (1.1) with p = v : 0, which confirm the as- 

sertion, may become invalid near these points, this in fact applies only to ps'_ The latter 
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results from the structure of the equations for u,p,s and us which,for k =Y = 0, areeither 

the characteristic equations with ps appearing only in the free terms, or can be converted to 

such. Integrating every characteristic equation from t= 0 to any point and using (2.2) for 

estimating the integrals in pS' along the segments of the gas cf- characteristics and traject- 

ories, we obtain estimates of the form (2.3). If qf is independent of ps, then the smallness 

of u', p’,s’ and u,' at any pJ' follows at once, otherwise we find that the dependence of cPf on 

Pe is usually so weak that it does not contribute, similarly as the dependence of cpj onother 

parameters, any significant corrections to the formula determiningtheinstantofintersection 

of the particle trajectories obtained for (Pf = con&. 
The instant of intersection of the particle trajectories is determined fromthe condition 

xr,z(ax/ag)t = 0 in which the new independent variable E, constant on each perturbedtraject- 

ory, varies on passage from one trajectory to the next. Taking, as in (2.1), 5 as the part- 
icle coordinate at t = 0, we find that 

(2.4) 

where U, (t, t) is the solution of the equation uSt s(&J, / at), = qf * (u - u,). Here, unlikebefore, 

u and U, represent total velocities and not their unperturbed values depending only on 6 

The formula for .zc is obtained by differentiating (2.4) and has the form 

Let us integrate 

ferentiate the result 

This yields 

zt(t,C)= 1 + 5 ~'(t, C)dz = 1 + i us<@> 5) dT 
0 " 

(at 'pi = con&, which is in fact unimportant), the equation for us, dif- 

obtained with respect to 5 and substitute U,E into the previous formula. 

"~=l+(l-~-"ff)tfz/' .~o+~j.e-“‘ldrSU~(e,b)e::ljdj =I+ 

0 0 

(2.5) 

k@ (1 - e-“+) tf cos kx + to. 0 (E” + Ey + key + ~0”) 

In carrying out the above manipulations we have madeuse of the initial conditions (1.4) and 

estimates given above. Moreover, we have taken into account the alternating signs of the 

contributions to uf' furnished by the perturbations arriving along the gas C* -characteristics 

and trajectories. According to the equation for particle continuity Ps + Ps = (PJ + PSO') 1 XC, 
where P. = pso. Since t<l, this, together with (2.51, yield for ke”“<(l the formula (2.1) 

in the linear approximation. Conversely, for ke”“> O(1) the density of the particles may be- 

come infinite already at finite t. 
t = t, = l/(kP). 

For any fixed E~'<I and k-t on this takes place at 

The intersection of the particle trajectories under the initial conditions (1.4) leads, 
within the frameworkof the two-liquid model in question, to formation of a set of discontin- 

uity surfaces in the form of sheets (sheaves or clusters) /1,7,8/, with finite surfacedensity 

R 8. The particles which occupied at t = 0 the segments of the X-axis of length l= 2n/k 

arrive at each sheet over the time interval of the order of &, counted from its appearance. 

This makes R, equal to Snp,, lk. However, even in such a situation the conclusions made about 

whether the problem is ocrrect or incorrect depend onthetype of perturbations experienced by 

the other parameters. In particular, if the velocity of the sheet U, differs at t< 1 little 
from the velocity of the particles in the unperturbed solution, then we can pass again, as be- 

fore, in the set of the results, from Ps' to m', use the estimate (2.3) and obtain, if neces- 
sary, in terms of m, the smoothing of the particle density without taking into account their 

"bunching". 

In the course of forming the particle agglomerates over the period of order k-‘, their 

parameters different from R, will in fact coincide with u,, v,,and e, by virtue of the con- 
ditions of conservation of particle mass, impulse and energy, since the interactions between 

the particles and gas over such short time intervals result in contributions of the order of 
k-1. Further variation in the parameters of the sheet on the N-intervals occurs when it 

reacts with the gas without depositing new particles (R, = const) , and is described by the 
equations /l/ 

du, / dt = F I R,, dV,, I dt = F, I R,, dE, I dt = Q (2.6) 

in which d/dt denotes the total derivative along the trajectory of the sheet, &I dt = U,, V,, 
is the tangential sheet velocity component, E, is its specific'internal energy, F and F, are 
the components of the surface force Fatting from the gas on a unit surface of the sheet, and 
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Q is the amount of heat passing from the gas to unit mass of the sheet in unit time. 

Let the gas parameters in the perturbed and unperturbed flow be almost equal. Then com- 
paring (2.6) with (1.1) we see that u,,V,, and E, will be nearly equal to II,, vST and e, of 
the unperturbed flow provided that 

F I R: + f, F, / R, + f,, Q + q for R, G Znp,, i k -+ 0 (2.7) 

where f, f, and p are the same as in (1.1) but after replacing the particle parameters with 
the sheet parameters. We can stipulate that the conditions (2.7) essential for any model of 
the sheet, ensure also the smallness of the perturbations in gas parameters. Indeed, inte- 
grating in the unperturbed flow the conditions of compatibility (1.6) with v=O and the equa- 

tions for s and Ye from (1.1) across the strip of width i=2x/k bounded by the particle 
trajectories, we find with the accuracy of O(k-2) , that 

where AT is theincrementin 'p during the passage across the strip in direction of increasing 

t, and the + (-) signs correspond to the c+(c-) segments of the characteristics. In the 
perturbed motion, after the particles of this strip have been deposited on the sheet,theleft- 

hand sides of (2.8) vary only because of the interaction between the gas and the sheet, in 

accordance with the conditions /l/ 

]P (u - o,)] = 0, ]P -I- P (U - a,)'] = -FE‘, ]p(u-U,)v,] = ~ F, 
(2.9) 

]P (u - Us) (21 + (U - UJ2 i- t;“)l = -2 (R,Q + F,V,,) 

in which [q]= I+J+ -r+- and 'pm(@) denote the value of W'in front (behind) the sheet in the direc- 

tion of the gas flow. By virtue of (2.9) we have, with the accuracy of up to O(R,*), 

(2.10) 

Here V, = nl,‘, + V,,, n is the unit vector in the z-direction and, in contrast to (2.9), the 

parameter differences are brought in analogously to Acp in (2.8), in the direction of increas- 

ing t, along the corresponding line. Since R, = p&l,, comparing (2.8) with (2.10) proves the 

assertion made above. 

Since every sheet is described by the ordinary differential equations (2.6) with & 2 
const, it follows, that for a model disregarding the volume of the particles, the Cauchy 

problem on the N-intervals is correct for the set of initial data without the derivatives in 

z, and the set of results with m' replacing P.9'. An analogous assertion for the E-inter- 

vals is proved more simply, since on these intervals the properties of the gas and particle 

agglomerates after forming into sheets remain almost unchanged. Moreover, here and in Sect.3 

no assumption is required concerning the dependence of mf on the parameters. 

3. Returning now to the model with x#O, we first write down the results of linear 

analysis commenced in Sect.1. On the SP-intervals where all roots of the dispersion equa- 

tion (1.5) are real, the Cauchy problem is correct under the usual conditions,atleast when 

the perturbations do not affect the validity of the linear analysis. Perusal of the possible 

intersections of the particle trajectories shows that the latter means the boundednessofthe 

initial derivatives (FXO ’ - k~v< KQ where EV = 0 (1) are constants depending from unperturbed 

solution. For the E-intervals the results of tne linear analysis of the models with x#O 

and x=0, are identical. Thus the only increasing (linearly in k) parameter is ps'. There- 

fore, by neglecting the free terms in the linearized equations and discartingfromtheresults 

the quantities of the order of p and v, we can retain for pa' the formula (2.1). Therefore 

the situation in the complete model with x# 0 does not differ on the E-interval from the 

situation realized for the simplified model on any intervals. The Cauchy problem is correct 

if the derivatives in z are included in the set of initial data. 

The main difference between the models with xf0 and X _ 0 manifests itself on the 

SE-intervals which, incidentally, are the most interesting ones. Here one of the two 

complex conjugate roots of (1.5) with x#O yields an exponentially growing solutionwiththe 

index proportional to k. Retaining only this root in (1.8) and the terms principal in p 

and v in the expression accompanying the increasing exponent, we obtain for x<l 

, cl&US 
p=~e aktcos kc, IL’ = - -+&-, 1 

u,' = Ts~eaktsin kc, 
l-AZ 

Ps’ = qgT P’ (3.1) 
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The presence of k in the exponents prevents us from ensuring the correctness by the fact that 

arbitrary derivatives in I are included in the set of initial data, and this represents the 

main difference between the complete and the simplified model. Thus when x# 0 and the in- 

itial perturbations are arbitrarily smooth (in the functions themselves, as well as in their 

first, second, etc. derivatives), then by virtue of (3.1) the perturbations of the parameters, 

primarily p.', can grow as strongly as we like, at t>o. However, within the framework of 

the nonlinear analysis this takes plane only for Pi', and pa' = 00 at finite t = t,, when 

the particle trajectories intersect for the first time. Thus, after the time of the order of 

t,, as well as for x = 0, all particles coalesce and form agglomerates with surface density 

of R,== 2np,,/k. The nonlinear analysis includes the same stages as the case 2 = 0, andleads 

to analogous results and conclusions. First, using (1.6), (2.2) and the estimates of the 

type (2.3), we show that for t< t, u’ and p' are much smaller than P.' and satisfy the form- 

ulas (3.1) with 5 constant on the perturbed particle trajectories. This enables us to find 

"6 and 1,. Thus for ksUS = E with fixed s<l, i.e. with u,,"' bounded, (2.5) is replaced 

by 
"6 zz 1 + E”* (2a)_'e"k' LXX kc = 1 -1 E (2ak)-leaat cos kc 

The above formula, valid for ak>l yields t, = (.&)-llIl(2& IE). For the nonsmooth initial 

perturbations t* will be much smaller, in particular, if k-t 00 and .?q is fixed, then, as in 

Sect.2, t, = 1 I (kc”‘). 

Further arguments identical for Xf 0 and x = 0 include (2.6) - (2.10). Here (2.8) fol- 

lows from (1.6) and at v# 0, just as in the unperturbed solution, u' = f and ps' = 0, and 

the validity of (2.9) and (2.10) is justified by the fact that when the process of coalesence 

of the particles is completed , no particles exist outside the agglomerates. Thus the Cauchy 

problem is also correct for x#O with m' replacing ps‘in the results, provided that condi- 

tions (2.7) are fulfilled. Since in the simplest model of the sheet /7/ the conditions hold 

for any R,, therefore (2.7) is reduced to the requirement that any, more complete model, 

transforms to the simpler model as R,-+O. 

The completed analysis can be applied without any difficulty to the initial distributions 

different from (1.2) and to other multiphase liquid models without inherent pressure of the 

dispersed phases. Although the individual details may change (e.g. in the case of two incom- 

pressible fluids with p = 0 and v # 0 studied in /2/, the exponential index in the analog 

of (3.1) is proportional, as k+&,not to k but to v/B, the conclusions about the correct- 

ness of the Cauchy problem remain valid. This justifies the regularization procedures smooth- 

ing the fine ripples which must, nevertheless, allow the formation of the macroaggregates. 

The author thanks A.L. Ni and R.I. Nigmatulin for the stimulating comments and contacts 

and S.K. Godunov for valuable suggestions. 
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